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Quantum game theory, a subset of quantum information science, is the extension of classical game
theory from the perspective of quantum algorithms. In classical game theory, strategies are typically
restricted to those that are pure (deterministic) or mixed (probabilistic), but with the introduction
of quantum strategies, players, and states, these quantum games exhibit exceptional behavior not
present in their classical counterparts.

I. INTRODUCTION

Game theory, a subset of the expansive field of infor-
mation theory, is the study of mathematical models of
strategic interaction between two or more individuals. A
number of models that arise from game theory have nu-
merous rich applications to a range of fields, including
logic, computer science, economics, biology, and sociol-
ogy [8].

Traditionally, classical game theory has dealt with ra-
tional decision-makers (players) and their options that
they choose in a setting where the outcome of depends
not only on their own actions, but also on the actions of
others (strategies) [5, 8]. These options are selected in
such a way that the players’ utilities are maximized, so
that each player strives to get the largest payoff possi-
ble. Informally, utility represents the motivations of the
players; a utility function assigns a real number to every
possible outcome of the game, with higher utility denot-
ing a more preferable outcome. With the introduction
of strategies involving quantum superpositions of regular
strategies (quantum strategies) and states (quantum
states), a number of results in the classical formulation
of game theory can be extended [4].

Consider the prisoner’s dilemma, a famous two-player
game from classical game theory. In this game, two pris-
oners Alice and Bob have two choices: Cooperate (C)
or Defect (D). If both prisoners defect, then each pris-
oner will serve two years in prison—both players will end
up with a utility of −2. If one prisoner cooperates and
the other defects, then the one who cooperates is set free
and the other will serve three years in prison. Finally,
if both prisoners cooperate, then each prisoner will serve
one year in prison. This game can be modeled using a
payoff matrix, a matrix whose entries are the utilities of
the row (Alice) and column (Bob) players, respectively.

C D

C −1,−1 −3, 0

D 0,−3 −2,−2

Assuming that Alice and Bob are perfectly rational,
neither will prefer to cooperate over defect. Indeed, if
Alice cooperates, then Bob has payoff −1 if he cooperates
and payoff 0 if he defects, so Bob will always want to

defect in this case. If Alice defects, then Bob has payoff
−3 if he cooperates and payoff −2 if he defects, so again
Bob will always want to defect. By symmetry, Alice will
want to defect no matter what Bob plays. Therefore,
both Alice and Bob will choose to defect, resulting in
payoffs −2 for both players. Even though it is in their
best interests to both cooperate, resulting in payoffs of
−1, two perfectly rational individuals will both defect in
a single instance of this game [8].

When the notion of strategies is extended to the quan-
tum domain using qubits to represent players’ states,
even simple games like the prisoner’s dilemma are en-
dowed with a mathematically rich and strategically com-
plex structure. In the case of the quantum prisoner’s
dilemma, it turns out that we can parametrize the “en-
tanglement” of a continuum of different games using
our quantum formulation, and the solutions to these
games will differ depending on the value of our parameter
[1, 4, 7].

In this paper, we first give a quantum formulation of
quantum game theory analogous to the classical formu-
lation of classical game theory, and we then discuss the
properties, structures, and solutions to quantum games
that arise when we extend their classical counterparts to
the quantum domain.

II. CLASSICAL GAME THEORY

A. Classical Formulation

We first give a brief overview of the notion of strategy
in classical game theory. An information set of a player
is a set that establishes all possible moves that could have
taken place in the game so far. That is, when a player is
in a certain information set, he/she knows that one of the
nodes in the information set is reached, but she cannot
rule out any of the nodes in the information set [8].

A strategy of a player is a complete contingent-plan
that determines which action they will take at each in-
formation they are to move. Equivalently, a strategy of a
player i is a function si that maps every information set
hi of player i to an action that is available at hi. A strat-
egy profile of a game with players N = {1, 2, . . . , n} is a
vector s = (s1, . . . , sn) of strategies. The set of all strat-
egy profiles is denoted by S = S1 × . . . Sn, where Si is
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the set of all strategies of player i [8].

In 1944, the mathematician John von Neumann intro-
duced the concept of a strategy profile where no player
can do better by unilaterally changing his or her strat-
egy. This would later be known as a Nash equilibrium,
named after the mathematician John Nash after his pub-
lication of his famous 1951 article “Non-Cooperative
Games” [6]. In other words, a Nash equilibrium is a
strategy profile in which no player has an incentive to
deviate if all the other players follow the strategies that
are prescribed to them [5].

Formally, a strategy profile s∗ = (s∗1, . . . , s
∗
n) is a

Nash equilibrium if s∗i is a best response to s∗−i =
(s∗1, . . . , s

∗
i−1, s

∗
i+1, . . . , s

∗
n) for each i. That is, for each

i,

ui(s
∗
i , s
∗
−i) ≥ ui(si, s∗−i) ∀ si ∈ Si.

Furthermore, Nash equilibria can be in both pure and
mixed strategies. A pure strategy is one that provides
a complete definition of how a player will play a game.
A mixed strategy is one that assigns a probability to
each pure strategy, and allows for the player to randomly
select a pure strategy.

In some games, there may be a number of Nash equilib-
ria, so there are many different ways to narrow down the
number of solutions (known as refinements), which gen-
erally depend on the type of game. Prominent examples
of these refinements include subgame perfect Nash equi-
librium (which arise in repeated games), Bayesian Nash
equilibrium (which arise in games of incomplete informa-
tion), and sequential equilibrium (which arise in extensive
form games).

Arguably the most famous theorem in classical game
theory is the one that won John Nash his Nobel Prize in
Economics. Define a finite game to be one with a finite
number of players in which each player can choose from
finitely many strategies. Nash’s Existence Theorem
then states that every finite game has at least one Nash
equilibrium in pure or mixed strategies [5, 8].

Another famous theorem in classical game theory is
John von Neumann’s minimax theorem, which has seen
a number of applications in economics and computer sci-
ence. Let P and Q be mixed strategies for Alice and
Bob, and let A be their payoff matrix. Then the Mini-
max Theorem states that

max
P

min
Q

E[P,Q] = min
Q

max
P

E[P,Q] = v

where E[P,Q] = PTAQ is the expected payoff. Here, v is
said to be the value of the game. As a consequence of
the Minimax Theorem, there must always exist optimal
strategies P ∗, Q∗ [8].

Finally, we say that a game is zero-sum if each
player’s gain or loss of utility is exactly balanced by the
losses and gains of the other participants. An example of
a two-player zero-sum coordination game is

A B

A −a, a b,−b

B c,−c −d, d

B. Classical Games

Let us return to the example of the prisoner’s dilemma.
In the example given above, the only pure-strategy Nash
equilibrium is (D,D); both players will receive payoff
−2, but neither is incentivized to deviate. There is no
mixed-strategy Nash equilibrium. If there were, then we
could write the strategy profile (pC+(1−p)D, qC+(1−
q)D) with probabilities p, q ∈ (0, 1) for Alice and Bob,
respectively. For Alice, the expected utility of playing C
is

uA(C, q) = quA(C,C) + (1− q)uA(C,D) = 2q − 3

and the utility of playing D is

uA(D, q) = quA(D,C) + (1− q)uA(D,D) = 2q − 2.

Since Alice’s payoff of playing D is always greater than
playing C, she is always incentivized to play D, so the
above strategy profile cannot be a mixed Nash equilib-
rium, as desired.

Some games that do not have a Nash equilibrium in
pure strategies may have an equilibrium in mixed strate-
gies. Consider the game of hide and seek, given by the
following payoff matrix:

U D

U 1, 0 0, 1

D 0, 1 1, 0

This is another example of a two-player coordination
game with perfect information. Notice that there is no
pure-strategy Nash equilibrium; no matter what choice a
player chooses, they are always incentivized to choose the
other. However, there is a mixed-strategy Nash equilib-
rium: ( 1

2U + 1
2D,

1
2U + 1

2D). Indeed, each player receives

payoff 1
2 according to this strategy profile, and it can be

easily checked that any deviation will result in a lower
payoff for each player [8].

III. QUANTUM GAME THEORY

A. Motivation

We now extend the domain of classical game theory,
in which we considered only pure and mixed strategies,
to that of quantum game theory, in which the states and
strategies have quantum analogs in quantum states (both
pure and mixed) and quantum strategies.
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Let Ω be a sample space, σ be the set of events, and p
be a probability distribution over σ. Formally, in classical
game theory, we can think of players to be simple ran-
dom variables X : (Ω, σ, p)→ Λ, where (Ω, σ, p) is a prob-
ability space with finite cardinality and Λ = {λ1, . . . , λn}
are the moves of X [2]. Since

n∑
i=1

p(X = λi) = 1,

we note that Λ can be put in one-to-one correspondence
with some subset of R. This motivates us to consider the
quantum formulation as one where the moves are eigen-
values of some self-adjoint operator in a Hilbert space.

We can associate X with an n× n self-adjoint matrix
given by X = (xij), where xii = X(i) and xij = 0 if i 6= j
[2]. Then player X corresponds to the spectral resolution

X =

n∑
i=1

λiEi

where λi = X(i) and Ei is the one-dimensional projection
matrix with (Ei)ii = 1 and (Ei)ij = 0. Furthermore, if
we let ρ = (ρij) to be the n × n matrix with ρii = p(i)
and ρij = 0, then ρ is a positive matrix with unit trace,
or a state; we also have tr ρEi = pi.

Similarly, for two-player quantum games, we can think
of the players X and Y as self-adjoint operators X :
H1 → H1 and Y : H2 → H2 with spectral resolutions

X =

n∑
i=1

λiEi

and

Y =

k∑
i=1

µjFj ,

where (H1, P (H1), ρ1) and (H2, P (H2), ρ2) are two finite-
dimensional quantum probability spaces. We say that
players X and Y have available moves λ1, . . . , λn and
µ1, . . . , µk, respectively [2]. Thus, tr ρ1Ei is the proba-
bility that X will make move λi, and tr ρ2Fj is the prob-
ability that Y will make move µj .

B. Quantum Analogs of Classical Game Theory

Using the sets of possible moves (λi) and (µj), we can
find a payoff matrix A, analogous to that in classical
game theory. Define the expected payoff of the strategy
profiles E = (E1, . . . , En) and F = (F1, . . . , Fk) by

E[E ,F ] = tr ρ1E ·A · tr(ρ2F)
T

=

n∑
i=1

k∑
j=1

tr ρ1Eiaij tr ρ2Fj .

If n = k and ρ1 = ρ2 = ρ = |u〉〈u|, where u ∈ Cn is a
unit vector and |u〉〈u| (ω) = 〈u, ω|u, ω〉 v, then ρ is a pure
state and E commutes with F . That is, EiFj = FjEi
for all i, j. Moreover, tr ρ(EiFj) = tr ρ(Ei) · tr ρ(Fj), so
E[E ,F ] can be thought of as the total expected payoff of a
classical two-person zero-sum game between independent
players X and Y .

We can now state the quantum variant of the Mini-
max Theorem. First, if (H,P (H), ρ) is an n-dimensional
quantum probability space and E = {E1, E2, . . . , En} ⊂
P (H) such that Ei is a one-dimensional projection for all
i and

tr ρ

(
n∑
i=1

Ei − I

)
= 0,

then we say that E is a “ρ-resolution of the (n×n) iden-
tity” [2].

Furthermore, we define an equivalence relation ≡ in
the set of all such ordered resolutions of the identity by
E ′ ≡ E (mod ρ) if and only if tr ρE ′ = tr ρE . Denote this
equivalence class corresponding to E by [E ]ρ. Then the
quantum Minimax Theorem can be stated as follows.

Let ρ ∈ CN and σ ∈ CK be pure states, and let A be
an (N ×K) payoff function. If E is an N -fold orthogonal
resolution of the (N × N) identity and F is a K-fold
orthogonal resolution of the (K ×K) identity, then

max
[E]ρ

min
[F ]σ

E[E ,F ] = min
[F ]σ

max
[E]ρ

E[E ,F ].

This theorem serves as a quantum analog to the famous
classical Minimax Theorem using, formalized within the
framework of the spectral theorem for self-adjoint oper-
ators on finite-dimensional quantum probability spaces
[2].

IV. QUANTUM GAMES

The most fundamental solution concept in game the-
ory is the Nash equilibrium. A large portion of classical
game theory deals with variants of classical games and
the effects on the Nash equilibria. By extending games
into the quantum domain, we see that new Nash equilib-
ria can arise in different ways.

Let us revisit the prisoner’s dilemma, but with a quan-
tum twist: we now allow players to adopt quantum
strategies. Each player has a qubit and can manipulate it
independently in this version of the game. Per our quan-
tum formulation above, we assign possible outcomes of
the classical strategies C and D the two basis vectors of
a qubit, denoted by |C〉 = |↑〉 =

(
1
0

)
and |D〉 = |↓〉 =

(
0
1

)
.

Furthermore, let us adjust the payoff matrix so that the
Nash equilibrium stays the same but all payoffs are now
nonnegative:



A Quantum Formulation of Game Theory 4

FIG. 1: A quantum circuit for the quantum prisoner’s
dilemma [4].

C D

C 3, 3 0, 5

D 5, 0 1, 1

Consider the one-parameter gate

Ĵ = exp
{
iγD̂ ⊗ D̂/2

}
,

where γ ∈ [0, π/2]. This gate Ĵ produces entanglement
between the two qubits [3, 4]. If the game starts from
the pure state |CC〉, then after passing the state through
the gate, the initial state becomes

|ψi〉 = Ĵ |CC〉 = cos
γ

2
|CC〉+ i sin

γ

2
|DD〉 .

The parameter γ can be considered as a measure of the
game’s entanglement.

The physical model of this quantum game is as follows:
After the initial state |ψi〉 is produced, each player ap-

plies a unitary transformation on their individual qubit.
Subsequently the game’s state goes through Ĵ† and the
final state becomes |ψf 〉. According to the corresponding
entries of the payoff matrix, we have the utilities

uA = 3PCC + 1PDD + 5PDC + 0PCD,

uB = 3PCC + 1PDD + 0PDC + 5PCD

where Pσσ′ = | 〈σσ′|ψf |σσ′|ψf 〉 |2 is the probability that
the final state will collapse into |σσ′〉 [4]. Each player
gets payoff according to their payoff function.

Now consider the case where the strategic space is re-
stricted to a two-parameter strategy set as a subset of the
whole unitary space. This unitary operator as a function
of parameters θ, φ is given by

U(θ, φ) =

(
eiφ cos θ2 sin θ

2

− sin θ
2 e−iφ cos θ2

)
where θ, φ ∈ [0, π/2]. We note that

U(0, 0) =

(
1 0
0 1

)
is the identity operator, and corresponds to Cooperate,
and

U(π, 0) =

(
0 1
−1 0

)

is the bit-flip operator, and corresponds to Defect [1, 4, 7].
For the game with γ = 0, there exists a pair of quan-

tum strategies D̂ ⊗ D̂ (this strategy D̂ can be thought
of as “quantum Defect”), which is the Nash equilibrium
and yields payoff (1, 1). This game behaves classically
[1, 4, 7], and the Nash equilibrium and final payoffs of the
game are equivalent to those in the classical prisoner’s
dilemma. Such a game is considered to be “minimally
entangled.”

For the game with γ = π/2, there exists a pair of

strategies Q̂ ⊗ Q̂ (this strategy Q̂ can be thought of
as “quantum Cooperate”), which is a Nash equilibrium
and yields payoff (3, 3). As it turns out, this result is
Pareto optimal—in which no individual is made better
off without making at least one other individual worse off
[4]—and as such the “dilemma” that was present in the
original classical prisoner’s dilemma game has been elimi-
nated [1, 7]. By allowing quantum strategies in the game,
we have managed to find a Nash equilibrium in quantum
strategies that yields better payoffs for both players and
was classically forbidden.

In both the quantum and classical versions of the pris-
oner’s dilemma, in the decision-making step, no player
has any information about which strategy the other will
adopt. As such, this is a fascinating result that is rem-
iniscent of unintuitive results in quantum information,
as a consequence of entanglement of the two qubits. In
essence, entanglement serves as a sort of contract between
the players of the game.

It is natural to ask what happens in quantum prisoner’s
dilemma games that are neither minimally nor maximally
entangled; that is, γ 6= {0, π/2}. As it turns out, there
are two thresholds of the game’s entanglement at

γ1 = sin−1
√

1

5
and γ2 = sin−1

√
2

5
.

For games with γ ∈ (0, γ1], the quantum game behaves
classically, with features identical to the case where γ = 0
[4]. The Nash equilibrium of the game is again D̂ ⊗ D̂
and the final payoff vector is (1, 1).

For games with γ ∈ [γ1, γ2], the quantum game shows
features that are present in neither the γ = 0 nor the
γ = π/2 case. Here, D̂ ⊗ D̂ is no longer the Nash
equilibrium, but two Nash equilibria arise in the form
of D̂ ⊗ Q̂ and Q̂ ⊗ D̂. The payoff of the strategy D̂ is
5 cos2 γ and that of Q̂ is 5 sin2 γ. Since γ ≤ π/2, we

have 5 cos2 γ ≥ 5 sin2 γ, so the player playing D̂ will earn
a higher payoff. Even though the prisoner’s dilemma is
fundamentally symmetric, the introduction of quantum
states causes a surprising asymmetry to arise.

Finally, for games with γ ∈ [γ2, π/2), the quantum
game behaves similar to the maximally entangled case,
with Nash equilibrium Q̂ ⊗ Q̂ with payoff vector (3, 3).
As such, depending on the value of the parameter γ, the
“dilemma” in the prisoner’s dilemma can be continuously
“removed” [4].

Note that the discontinuities in this quantum game can
be considered as entanglement-correlated phase transi-
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FIG. 2: Expected utility of the quantum prisoner’s dilemma
as a function of γ [4].

tions. As we continuously move γ along the real line,
we can obtain a number of (independently) classical
games that yield Nash equilibria different from the orig-
inal game. To summarize, for γ ∈ [0, γ1], the quantum
game yields no advantage over the classical game. For
γ ∈ [γ1, γ2], there are two Nash equilibria, both of which
are asymmetric. For γ ∈ [γ2, π/2], a new Nash equilib-
rium arises, which is not only symmetric but also yields
higher payoffs than the original game. A graph of the
expected utilities of the quantum prisoner’s dilemma as
a function of γ is as follows:

Finally, we can also adjust the values of the payoff
matrix (while keeping the unique Nash equilibrium at

(D,D)) to vary the phase transition behavior. For some
payoff values, the transition phase in which the quantum
game has two asymmetric Nash equilibria disappears; for
others, the quantum game may not even display a tran-
sition phase, or even stranger, the classical and quantum
phases may overlap and create a “coexistence phase” [4].

V. DISCUSSION

Classical game theory, despite being a relatively new
field of mathematics, has been studied extensively by
mathematicians. Extending game theory to the quantum
domain by introducing quantum strategies and quantum
states is an even newer development in the field, and
solutions to such quantum games often yield interesting
and unexpected results that would never have appeared
in their classical variants. In summary, quantum game
theory is a promising area of study in the burgeoning
field of quantum information that provides a totally new
outlook on the purview of classical game theory.
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